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Traditional theoretical method of evaluating the extent
of the statistical distributions of speckle phase is to cal-
culate the standard deviation of phase which is based on
the probability density function of speckle phase. How-
ever, it is very difficult and even impossible to derive
the strict analytical expression. Thus approximate an-
alytical methods were developed to evaluate the extent
of the speckle phase distributions. With regard to the
first-order statistics, Takai et al. used the phase angle
defined from the equiprobability density ellipse to eval-
uate approximately the extent of phase distributions of
the Gaussian speckle[1]. But this method is only valid
in the cases that the coordinate origin in the complex
plane of speckle amplitude must be located at or out-
side the equiprobability density ellipses. Wang used the
phase angle defined from the two equiprobability density
ellipses to evaluate approximately the extent of the free
statistical distributions of phase difference of the Gaus-
sian speckle[2]. But this method seems to be only valid
in some relatively small regions at which the equiproba-
bility density ellipses are located in the complex plane of
the speckle amplitude with the variation of some param-
eters of the speckle fields. For relatively large regions,
this method seems to be wrong to explain the free sta-
tistical properties of the phase difference. So, we cannot
use these analytical methods to study widely or correctly
the statistical properties of the speckle phase including
the fully and partially developed speckle fields. In this
letter, a new method of studying the speckle phase is
proposed. The general expression of the standard devia-
tion of the speckle phase about the first-order statistics is
derived according to the relation between the phase and
the complex speckle amplitude. The first-order statisti-
cal properties of speckle phase have been investigated in
the diffraction fields.

The complex speckle amplitude at a point in the
speckle fields is expressed as

A = Ar + iAi = |A| exp(iθ), (1)

where Ar and Ai are the real and imaginary parts of the
speckle fields and

|A| =
√

Ar
2 + Ai

2, θ = tan−1

(

Ai

Ar

)

(2)

are the amplitude of A and the speckle phase, respec-
tively. 〈A〉 is the ensemble mean value of the complex
speckle amplitude, i.e., the specular component, in which
〈· · ·〉 denotes the ensemble mean. 〈A〉 is expressed as

〈A〉 = 〈Ar〉 + i 〈Ai〉 = |〈A〉| exp
(

iθ̄
)

, (3)

where 〈Ar〉 and 〈Ai〉 are the real and imaginary parts of
〈A〉 and

|〈A〉| =

√

〈Ar〉2 + 〈Ai〉2, θ̄ = tan−1

( 〈Ai〉
〈Ar〉

)

(4)

are the average amplitude and the mean value of speckle
phase of 〈A〉, respectively. Define 〈A〉∗ as the complex
conjugate value of 〈A〉. The product of A and 〈A〉∗, i.e.,

Ap = A 〈A〉∗ , (5)

can also be expressed as

Ap = Ar
p + iAi

p = |Ap| exp (iθd) , (6)

where Ar
p and Ai

p are the real and imaginary parts of
Ap, respectively. According to Eq. (5), we can get

Ar
p = Ar 〈Ar〉 + Ai 〈Ai〉 , (7)

Ai
p = Ai 〈Ar〉 − Ar 〈Ai〉 . (8)

|Ap| is the module of Ap and

θd = θ − θ̄ = tan−1

(

Ai
p

Ar
p

)

(9)

is the deviation of speckle phase. The ensemble mean val-
ues of the real and imaginary parts of Ap are calculated
from Eqs. (7) and (8), respectively, as

〈Ar
p〉 = 〈Ar〉2 + 〈Ai〉2 = |〈A〉|2 , (10)

〈Ai
p〉 = 0. (11)

According to Eqs. (10) and (11), the mean value of the
phase deviation θd equals zero, and is expressed as

θ̄d = θ − θ̄ = tan−1

( 〈Ai
p〉

〈Ar
p〉

)

= 0. (12)
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We use the root-mean-square (RMS) value of the
imaginary part of the complex of Ap of Eq. (8), i.e.,
〈

(Ai
p)

2
〉1/2

, to calculate the approximate value of the

standard deviation of the speckle phase, which is ex-
pressed as

∆θa = tan−1







〈

(Ai
p)2
〉1/2

〈Ar
p〉






, (13)

in which
〈

(Ai
p)

2
〉1/2

is calculated, from Eq. (8), as

〈

(Ai
p)

2
〉1/2

=
(

〈

∆Ar
2
〉

〈Ai〉2 +
〈

∆Ai
2
〉

〈Ar〉2

−2 〈∆Ar∆Ai〉 〈Ar〉 〈Ai〉)1/2
. (14)

When the surface roughness increases to an enough
large value, the speckle fields will become fully devel-
oped, the ensemble mean value of the real and imaginary
parts of the complex speckle amplitude A and the value
of 〈∆Ar∆Ai〉 will approach zero[3,4]. From Eqs. (10) and

(14), we may prove that the value of
〈

(Ai
p)

2
〉1/2

/〈Ar
p〉

will approach infinity, ∆θa will approach π/2. In the case
of fully developed speckle field, the speckle phase obeys
the homogeneous statistical distributions, the probability
density function of speckle phase is P (θ) = 1/(2π)[3,4],

the standard deviation of the speckle phase is π/
√

3.
Therefore, through modifying Eq. (13), the standard de-
viation of speckle phase is given in the relatively exact
form as

∆θ =
2√
3

tan−1







〈

(Ai
p)

2
〉1/2

〈Ar
p〉






. (15)

Now we calculate the statistical parameters in
Eqs. (10), (14) and (15). The optical configuration for
producing speckle fields in the diffraction region is shown
in Fig. 1. The transparent diffuser placed in the object
plane with the ξ-η coordinate system is illuminated by
a Gaussian laser beam with the beam waist position in
the object plane. The speckle fields are produced in the
diffraction region. The observation plane denoted by the
x-y coordinate system is set in the diffraction region with
a distance z away from the object plane. The complex
amplitude at a point in the observation plane is given by

A(z,x) =

+∞
∫∫

−∞

E(ξ)T (ξ)K(z, ξ,x)d2ξ, (16)

Fig. 1. Optical configuration for producing speckle fields in
the diffraction region.

where

E(ξ) = exp

(

−|ξ|2
ω2

0

)

(17)

is the Gaussian amplitude of the illuminating laser beam
and ω0 is the beam width of the laser light in the beam
waist position.

T (ξ) = exp[iφ(ξ)] (18)

is the transmittance function of the diffuser, φ(ξ) rep-
resents the microscopic random phase variation for the
laser beam transmitting through the object. K(z, ξ,x)
is the propagation function from the object plane to the
observation plane and is given by

K(z, ξ,x) =
1

λz
exp

(

iπ

λz
|ξ − x|2

)

. (19)

In Eq. (19), λ is the wavelength of the incident laser
beam. We assume that the random phase φ(ξ) is a
stationary Gaussian random variable with zero mean.
Substituting Eqs. (17)—(19) into Eq. (16), the ensem-
ble mean values of the real and imaginary parts of the
complex speckle amplitude are obtained, respectively, as

〈Ar(z,x)〉 =
1√

1 + ẑ2
exp

(

−1

2
σ2

φ

)

× exp
(

− |x̂|2
)

cos

[

tan−1

(

1

ẑ

)

+ ẑ |x̂|2
]

, (20)

〈Ai(z,x)〉 =
1√

1 + ẑ2
exp

(

−1

2
σ2

φ

)

× exp
(

− |x̂|2
)

sin

[

tan−1

(

1

ẑ

)

+ ẑ |x̂|2
]

, (21)

where

ẑ = z/z0, (22)

z0 = πω2
0/λ, (23)

x̂ = x/ω(z), (24)

ω(z) = ω0

√

1 + (z/z0)2. (25)

In Eqs. (20) and (21), σφ denotes the standard devia-
tion of the random phase φ(ξ) and is called as the optical
roughness of the diffuse object. The circle function is as-
sumed for the spatial correlation function of the random
phase variation and is given by

ρφ (ξ1 − ξ2) = circ (|ξ1 − ξ2|/α) , (26)

where α is the correlation length. Under these circum-
stances, the variance of the real and imaginary parts,
and the covariance between the real and imaginary parts
of the complex speckle amplitude A are calculated and
expressed, respectively, as
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〈

∆Ar
2
〉

=
1

4Nẑ2

[

1 − exp
(

−σ2
φ

)]

{

1 − ẑ√
1 + ẑ2

exp
(

−σ2
φ

)

exp
(

−2 |x̂|2
)

cos

[

tan−1

(

1

ẑ

)

+ 2ẑ |x̂|2
]}

, (27)

〈

∆Ai
2
〉

=
1

4Nẑ2

[

1 − exp
(

−σ2
φ

)]

{

1 +
ẑ√

1 + ẑ2
exp

(

−σ2
φ

)

exp
(

−2 |x̂|2
)

cos

[

tan−1

(

1

ẑ

)

+ 2ẑ |x̂|2
]}

, (28)

〈∆Ar∆Ai〉 = − 1

4Nẑ
√

1 + ẑ2

[

1 − exp
(

−σ2
φ

)]

exp
(

−σ2
φ

)

exp
(

−2 |x̂|2
)

sin

[

tan−1

(

1

ẑ

)

+ 2ẑ |x̂|2
]

. (29)

In Eqs. (27)—(29), N = πω2
0/(πα2) is the number of scatters involved within the illumination region over the

diffuser. Substituting Eqs. (20), (21), and (27)—(29) into Eqs. (10), (14), and (15), the standard deviation of the
speckle phase in the diffraction fields is obtained as

∆θ =
2√
3

tan−1

{√
1 + ẑ2

2ẑ
√

N

[

(

1 − exp
(

−σ2
φ

))

×
(

exp
(

σ2
φ

)

+
ẑ√

1 + ẑ2
exp

(

−2 |x̂|2
)

cos

(

tan−1

(

1

ẑ

)))

]1/2

exp
(

|x̂|2
)

}

. (30)

When the normalized distance of ẑ increases and reaches to an enough large value, the observation point will be
located in the far-fields diffraction region. In this case, Eq. (30) is simplified as

∆θ =
2√
3

tan−1

{

1

2
√

N

[

(

1 − exp
(

−σ2
φ

))

(

exp
(

σ2
φ

)

+ exp
(

−2 |x̂|2
))]1/2

exp
(

|x̂|2
)

}

. (31)

Now we investigate the statistical properties of the
speckle phase in the diffraction region. For convenience,
we investigate the one-dimensional coordinate case. As
seen from Eq. (30), the standard deviation of speckle
phase is related to the four parameters respectively: the
optical roughness σφ of the diffuser, the normalized dis-
tance ẑ from the object plane to the observation plane,
the normalized position x̂ of the observation point in the
observation plane, the number of the scatters N con-
tributing to the speckle fields.

Figure 2 shows ∆θ as a function of the optical rough-
ness σφ for several values of x̂. As shown in Fig. 2, when
σφ = 0, there is no random phase turbulence caused by
the object, therefore, ∆θ = 0, which means that there is
no random phase fluctuation in the optical fields. The
value of ∆θ increases with the increase of σφ. When σφ

reaches to an enough large value, the speckle fields be-
come fully developed, ∆θ approaches the constant value
of π/

√
3. Figure 3 shows ∆θ as a function of ẑ. As seen

from Fig. 3, when the observation point approaches to
the diffuser, the value of ∆θ increases. That is because
the fluctuation of the speckle fields increase when ẑ de-
creases. When ẑ increases and reaches to an enough large
value, the observation point will be located in the far-field

Fig. 2. Standard deviation ∆θ as a function of the optical
roughness σφ with ẑ = 8, N = 40 for several values of x̂ = 0,
1.0, 1.4, and 2.0.

diffraction region, ∆θ will approach the value of the far-
field case which is expressed by Eq. (31). It should be
pointed here that Eq. (15) is not valid when ẑ approaches
zero. This is due to the limitation of the diffraction the-
ory of the optical fields. Figure 4 shows ∆θ as a function
of x̂ for several values of N . As seen from Fig. 4, when
x̂ = 0, ∆θ reaches to the relatively smallest value, ∆θ
increases with the increase of x̂, when x̂ increases and
reaches to an enough large value, the speckle fields will
become fully developed. In this case, ∆θ reaches to the

Fig. 3. Standard deviation ∆θ as a function of the normalized
distance ẑ with σφ = 1.0, N = 40 for several values of x̂ = 0,
1.2, 1.6, and 2.0.

Fig. 4. Standard deviation ∆θ as a function of the normalized
position x̂ with σφ = 1.0, ẑ = 8 for several values of N = 4,
18, 100, and 800.
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constant value of π/
√

3. As seen also, the value of ∆θ
decreases with the increase of the scatter number N ,
because the increase of the number of the scatters within
the illumination region over the object causes the de-
crease of the fluctuation of speckle fields.

In summary, a new theoretical method is proposed to
study the statistical properties of speckle phase. The
general expression of the standard deviation of speckle
phase is obtained according to the relations between the
phase and the complex speckle amplitude. The statisti-
cal properties of speckle phase have been studied in the
diffraction region by using this new method. It is shown
that the standard deviation of speckle phase is related to
the four parameters of the speckle fields. The statistical
properties of the speckle fields in the diffraction region
are well shown and thoroughly understood through this

new method. It should be pointed here that this method
may also be used to study the statistical properties of
phase difference of the speckle fields. The theoretical
results will be reported in another article.
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